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Abstract

Effect of surface tension (Gibbs–Thomson effect) on the inward solidification of a liquid in a spherical container is

investigated analytically by solving the unsteady heat equation via a small-time series expansion technique. A nonlinear

Shanks transformation is adopted to improve the convergence property of the series solution at large time. The results

show that at fixed Stefan number, the effect of surface tension is to increase the growth rate of the freezing front. A local

minimum in the freezing rate is found to develop for all surface tension parameter values considered in this study. Also,

analytic expressions for the relations between the growth rate of the freezing front, Stefan number and surface tension

parameter are derived under the asymptotic condition of small Stefan number. � 2002 Elsevier Science Ltd. All rights

reserved.

1. Introduction

Solidification is a common process in many practical

engineering applications such as refrigeration, ice for-

mation, casting of alloys, and crystallization of pure

substances. Generally speaking, such a process is fea-

tured by the existence of a moving interface between

different phases at which the thermal energy in the form

of latent heat is liberated. Owing to the unknown loca-

tion of this solid/liquid interface and the nonlinear form

of the thermal energy balance condition at the interface,

analytical solutions are difficult to obtain except for few

simple configurations. One of the few earliest exact so-

lutions is that by Neumann and separately, by Stefan

(see [1]) who studied the cooling of fluid from one end of

a one-dimensional semi-infinite region. They obtained a

closed solution for the temperature distribution in a self-

similar form and deduced that the location of the in-

terface advances with the square root of time. The

specific solution has since been the starting point for the

subsequent numerous approximate solutions to other

types of boundary conditions and geometries. Hence-

forth, the problems involving phase changes and moving

interfaces were traditionally categorized as ‘Stefan

problems’.

References relevant to the one-dimensional Stefan

problem were well documented in the book by Hill [2].

Specifically, various techniques and approximations

have been attempted to study the problem of an inward

solidification with spherical symmetry. These include the

power-series approximation method of Kreith and Ro-

mie [3]; the closed-form solution by Langford [4] under

the assumption of constant solidification rate; the ap-

proximate integral method of Poots [5]; the numerical

solution by Tao [6], Li [7], and Caldwell and Chan [8];

the perturbation method by Huang and Shih [9]; the

small parameter expansion solution by Pedroso and

Domoto [10]; the strained coordinates method by

Pedroso and Domoto [11]; the matched asymptotic ex-

pansions solution by Riley et al. [12]; the asymptotic

solution (near the final stage of complete solidification)

of Stewartson and Waechter [13]; the small-time ex-

pansion solutions by Davis and Hill [14], and Hill and

Kucera [15].

However, all the above results did not take into

account the thermal effect of the surface tension at the

interface. Surface tension affects the equilibrium temp-

erature (freezing or fusion temperature) at the interface of

the two phases via the so-called Gibbs–Thomson law. If
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we let c denote the surface tension coefficient, L the latent

heat per unit volume of the solid phase, R� the radius of

the spherical interface, and T �
f the freezing/fusion tem-

perature when the interface is flat; then the equilibrium

temperature on the spherical freezing front is given by the

following Gibbs–Thomson condition ([16]):

T � ¼ T �
f 1

�
þ 2c
LR�

�
: ð1Þ

That is, the equilibrium temperature on a curved inter-

face (with center of radius lies in the liquid phase) is

higher than that on a planar surface, and is increasing

with decreasing radius of curvature of the interface. It

should be noted that in deriving Eq. (1), a small value in

ðT � � T �
f Þ=T �

f has been assumed. Thus expression (1) is

not valid when the second term 2c=LR� in the paren-

thesis is of Oð1Þ, i.e., not suitable for freezing front with

very small radius of curvature. In the present study, we

shall investigate the inward freezing of liquid in a

spherical domain (such as liquid in a spherical container,

or a liquid droplet) under the modified equilibrium

condition (1) as imposed by the surface tension at the

interface.

As in all the previous works mentioned above, for-

mulation of the present study is based on the classical

one-phase model ([2]) that has been traditionally applied

to most of the Stefan problems. In this one-sided ap-

proach, the latent heat liberated from the freezing front

is assumed to be carried away by the solidified phase

only. This simplification leads to the familiar unsteady

heat-diffusion equation for the solid phase with moving

interfacial boundary. The equation describing the pro-

gression of the interface is derived from equating the

amount of heat released per increase of the freezing layer

to that diffused into the solidified field (Stefan condi-

tion). Since the Gibbs–Thomson condition is not valid

when the freezing front comes near to the point of

complete solidification, the set of equations is solved by

means of a small-time series expansion technique. A

nonlinear Shanks transformation ([17]) is applied to the

series in order to improve the convergence of the solu-

tion at large time. The effect of surface tension on the

temperature distribution in the solid field is discussed.

Also, the asymptotic behavior of the freezing rate in

terms of relevant physical parameters is determined to

the leading-order approximation of small cooling pa-

rameter (Stefan number) value.

2. Formulation of the problem

The governing equation is that of the one-dimen-

sional unsteady heat conduction equation written in the

spherical coordinate r�

Nomenclature

An;Bn integration constants in nth-order solution,
defined in Eqs. (23) and (30)

c heat capacity (per unit volume) of solid phase

eðkÞm sequence resulted from the kth-order Shanks
transformation

L latent heat (per unit volume) of freezing

M confluent hypergeometric function defined in

Eq. (28)

p; q orders of the confluent hypergeometric

function

R nondimensional radial position of the freezing

front

Rs nondimensional radius of the sphere

R0
m sequence of temperature gradient defined in

Eq. (36)

r nondimensional spherical coordinate

Sm m-term partial sum of the series solution (18)

S0
m m-term partial sum of the temperature

gradient kn

T nondimensional temperature

Tm sequence of temperature solution defined in

Eq. (32)

t nondimensional time

Greek symbols

a thermal diffusivity of solid phase

b nondimensional surface tension parameter

D Stefan number

e small quantity in the Gibbs–Thomson law,

defined in Eq. (A.1)

c surface tension at the solid/liquid

interface

g transformed radial coordinate defined in

Eq. (11)

kn temperature gradient at interface evaluated

from the nth-order solution
H transformed temperature variable defined in

Eq. (13)

Hn transformed nth-order temperature solution

r parameter combining the effects of surface

tension and Stefan number

s time-like coordinate defined in Eq. (11)

sc critical time at which the freezing rate is

minimum

n transformed variable used in the confluent

hypergeometric function (28)

Superscripts

* dimensional quantities
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oT �

ot�
¼ a

2

r�
oT �

or�

�
þ o2T �

or�2

�
; R�

6 r� 6R�
s ; ð2Þ

where T � represents the temperature, a is the thermal

diffusion coefficient of the solid, R�
s denotes the radius of

the sphere, and R�ðt�Þ the instantaneous location of the

solid/liquid interface (see Fig. 1). Suppose that the

temperature at the outer surface of the sphere is sud-

denly dropped to T �
s below the freezing temperature at

t� ¼ 0þ and kept constant afterwards, then the proper

boundary condition is

T � ¼ T �
s at r� ¼ R�

s : ð3Þ

The equilibrium temperature at the interface is that due

to the Gibbs–Thomson condition:

T � ¼ T �
f 1

�
þ c
L

2

R�ðt�Þ

�
at r� ¼ R�ðt�Þ: ð4Þ

Balancing the heat releasing rate and the heat conduc-

tion rate at the freezing front gives the equation for the

motion of the interface:

L
dR�

dt�
¼ ac

oT �

or�

����
R�
; ð5Þ

where c denotes the heat capacity (per unit volume) of

the solid phase.

Defining relevant dimensionless variables as

T ¼ T � � T �
f

T �
s � T �

f

; r ¼ r�

R�
s

; R ¼ R�

R�
s

; t ¼ at�

R�2
s

; ð6Þ

the nondimensional form of the Eq. (2) becomes

oT
ot

¼ 2

r
oT
or

þ o2T
or2

; R6 r6 1: ð7Þ

The associated boundary conditions are

T ¼ 1 at r ¼ 1; ð8Þ

T ¼ � b
D
� 1

RðtÞ ¼ � r
RðtÞ at r ¼ RðtÞ; ð9Þ

and the nondimensional growth rate of the freezing

front is given by

dR
dt

¼ �D
oT
or

����
R

: ð10Þ

In the above expressions, the dimensionless parame-

ter D ¼ cðT �
f � T �

s Þ=L is called the Stefan number, which

measures the degree of cooling. The parameter

b ¼ 2ccT �
f =ðR�

sL
2Þ represents the surface tension effect

(Gibbs–Thomson effect), and r ¼ b=D is merely a con-

venient dimensionless parameter, which can also be

taken as a measure of the surface tension when the

Stefan number D is held fixed. Surface tension force is

significant only when the radius of curvature is small.

Water has a small surface tension coefficient (c ¼ 0:077
N/m). Considering a liquid droplet of size 10�3 m, the

parameter r for water–ice system is then about 3	 10�4.

Melted metals have large surface tension (e.g.,

c ¼ 1:9 N=m for iron, 2.0 N/m for nickel), typical values

of r for common metals melts are around 10�2. In view

of Eq. (9), surface tension has therefore a nonnegligible

effect in solidification, particularly, when the radius of

the freezing front RðtÞ is small.

3. Solution to the problem

The problem involves a moving boundary (interface)

whose position is part of the solution and hence is not

known a priori. A boundary-fixed transformation [2]

g ¼ 1� r
1� RðtÞ ¼

1� r
sðtÞ ; ð11Þ

is adopted first to map the unknown position of the

freezing front to a fixed value in g, g ¼ 1. In Eq. (11),

s ¼ 1� R is another variable describing the instanta-

neous position of the freezing front, which can also be

treated as a time-like coordinate ð06 s6 1Þ. By using the
chain rule, the original Eq. (7) can be rewritten in terms

of the new coordinates ðg; sÞ

� dR
dt

oT
os

þ g
s
dR
dt

oT
og

¼ �2

ð1� gsÞs
oT
og

þ 1

s2
o2T
og2

: ð12Þ

A further transformation of temperature T will put the

equation in a form amenable to the series-expansion

technique,

T ¼ H
r
¼ H

1� gs
: ð13Þ

In terms of the new temperature variable H, Eq. (12)

becomesFig. 1. Definition of the physical domain of the problem.
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�s2
dR
dt

oH
os

þ gs
dR
dt

oH
og

¼ o2H
og2

: ð14Þ

The corresponding boundary and interface conditions

are

H ¼ 0 at outer surface g ¼ 0; ð15Þ

H ¼ �r at interface g ¼ 1; ð16Þ

and the growth rate of the interface is governed by

dR
dt

¼ D
s

1

1� s
oH
og

����
g¼1

þ s

ð1� sÞ2
H

����
g¼1

 !
: ð17Þ

The forms of Eqs. (14) and (17) suggest that we can

expand the solution into a power series of the time-like

variable s, i.e.,

Hðg; sÞ ¼
X
n¼0

snHnðgÞ: ð18Þ

Substituting (18) into Eqs. (14) and (17) and collecting

the like-power terms for each different order of s, we
obtain the following system of equations:

H00
n þ Dk0½�gH0

n þ nHn�

¼ H00
n�1 þ D

Xn�1

k¼0

gðkkþ1

(
� rÞH0

n�k�1

�
Xn�2

k¼0

ðn� k � 1Þðkkþ1 � rÞHn�k�1

)
;

n 2 I; nP 0; ð19Þ

where
Pm

k¼0ð�Þ ¼ 0 is defined whenever m < k, and

kn ¼ ðdHn=dgÞjg¼1 denotes the temperature gradient

evaluated at the interface at each different order n. In

Eq. (19), the prime symbols are shorthand notations

for differentiations with respect to the coordinate g.
The corresponding boundary conditions at each order

n are

H0ð0Þ ¼ 1; Hnð0Þ ¼ 0 for nP 1; ð20Þ

H0ð1Þ ¼ �r; Hnð1Þ ¼ 0 for nP 1: ð21Þ

The solution to the zeroth-order equation is easily

obtained as

H0 ¼ A0

Z g

0

eðDk0=2Þg2 dg þ B0; ð22Þ

where

A0 ¼
�r � 1R 1

0
eðDk0=2Þg2 dg

; B0 ¼ 1; ð23Þ

are the two integration constants determined from the

boundary conditions (20) and (21). The temperature

gradient at the interface is then obtained through dif-

ferentiating Eq. (22):

k0 �
dH0

dg

����
g¼1

¼ �ð1þ rÞR 1

0
eðDk0=2Þg2 dg

eðDk0=2Þ: ð24Þ

Notice that the temperature gradient k0 appears at both

sides of Eq. (24). An iterative procedure is then required

to calculate the numerical value of k0.

The homogeneous parts of all subsequent higher-

order equations (nP 1) can be recast into a normal form

via the coordinate transformation n ¼ Dk0g2=2

nH00
n þ

1

2

�
� n

�
H0

n þ
n
2
Hn ¼ 0: ð25Þ

Equation (25) falls into the class of the confluent hy-

pergeometric equation ([18]), whose general form is

nH00 þ ðq� nÞH0 � pH ¼ 0: ð26Þ

The two independent solutions to the above equation

are

Mðp; q; nÞ and n1�qMðp � qþ 1; 2� q; nÞ ð27Þ

in which Mðp; q; nÞ is the confluent hypergeometric

function of order ðp; qÞ defined as

Mðp; q; nÞ ¼
X1
k¼0

ðpÞk
ðqÞk

nk

k!
ð28Þ

with

ðpÞk ¼ p � ðp þ 1Þ � ðp þ 2Þ � � � ðp þ k � 1Þ for k P 1;

ðqÞk ¼ q � ðqþ 1Þ � ðqþ 2Þ � � � ðqþ k � 1Þ for kP 1;

ðpÞ0 ¼ 1; ðqÞ0 ¼ 1:

Note that the power series in (28) terminates at finite

terms for integer value of p. The solution to our present

Eq. (25) corresponds to the case ðp; qÞ ¼ ð�n=2; 1=2Þ.
For certain special values of ðp; qÞ, the hypergeometric

function (28) can be related to the more familiar expo-

nential and error functions [18]; e.g.

Mðp; p; nÞ ¼ en for any number p;

M
1

2
;
3

2
; n

� �
¼ 1ffiffiffiffiffiffiffi

�n
p

Z ffiffiffiffi
�n

p

0

e�z2 dz ¼
ffiffiffi
p

p

2
ffiffiffiffiffiffiffi
�n

p erfð
ffiffiffiffiffiffiffi
�n

p
Þ:

Thus by using proper recursive formulae ([18]) between

different orders of the hypergeometric function

Mðp; q; nÞ, solution Hn to the homogeneous Eq. (25) can

be rewritten into polynomial and error functions in g.
Having obtained the solution to the homogeneous part

of Eq. (19) for all n, the particular solution at each

different order n can be found by using the method of

variation of parameters. The complete solution at each

order n is then the sum of the two.

Since the expression of the solution becomes rather

lengthy and cumbersome very quickly with increasing
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order n, only the solution corresponding to the first or-

der in s (i.e. OðsÞ) is given here:

H1 ¼ A1g � B1 eðDk0=2Þg2
�

� Dk0g
Z g

0

eðDk0=2Þg2 dg

�

þ A0

3k0

k0ð þ k1 � rÞgeðDk0=2Þg2 ð29Þ

with integration constants

A1 ¼
�A0

3k0

ðk0 þ k1 � rÞeðDk0=2Þ; B1 ¼ 0: ð30Þ

At this order, the temperature gradient k1 at the inter-

face is given by

k1 ¼
dH1

dg

����
g¼1

¼ ðA0D=3Þðk0 � rÞeðDk0=2Þ

1� ðA0D=3ÞeðDk0=2Þ
: ð31Þ

In Eq. (31), k1 is an explicit function of k0 and A0, so is

the integration constant A1. Thus having determined the

values of k0 and A0 from the lowest-order solution, all

temperature gradients kn and integration constants An of

the subsequent higher-order solutions can be obtained

explicitly in terms of theses fundamental values.

In the present study, the solution has been deter-

mined up to Oðs4Þ. We shall omit their expressions for

brevity.

4. Results and discussion

4.1. Temperature profiles

We first define temperature solutions of increasingly

higher orders by a sequence Tm

Tm ¼ Sm
1� gs

; ð32Þ

where Sm ¼
Pm

n¼0 snHn denotes the first m-term partial

sum of the series solution (18). Successive Tm indicate

that terms of next order of s are added to the solution

series. In our present study, the value of m is from 0 to 4.

Fixing the parameter values at D ¼ 0:1, r ¼ 0:5, Figs. 2
and 3 plot the sequences of temperature profiles Tm at

time s ¼ 0:1 and 0.75 (which correspond to 10% and

75% of solidification of the sphere), respectively. It can

be seen that the series converges very fast at small time.

The convergence rate of the series solution deteriorates

gradually for large s, as shown in the insert of Fig. 3,

which is a local magnification of the temperature dis-

tribution. Owing to the slow convergence, a large

number of terms are needed in the expansion (18) to

acquire a solution with satisfactory accuracy.

In order to improve the convergence rate of the series

solution so that it can be applied to a much broader

range of s, a nonlinear transformation proposed by

Shanks [17] is adopted. Applying the first-order Shanks

transformation results in a new sequence eð1Þm which is

related to the original Tm by the following formula:

eð1Þm ðT Þ ¼ Tmþ1 �
ðTmþ2 � Tmþ1ÞðTmþ1 � TmÞ

ðTmþ2 � Tmþ1Þ � ðTmþ1 � TmÞ
;

mP 0: ð33Þ

The same transformation rule can be again applied on

the newly formed sequence eð1Þm to yield a second new

sequence eð2Þm :

eð2Þm ðT Þ ¼ eð1Þmþ1 �
eð1Þmþ2 � eð1Þmþ1

� �
eð1Þmþ1 � eð1Þm

� �
eð1Þmþ2 � eð1Þmþ1

� �
� eð1Þmþ1 � eð1Þm

� � ;
mP 0: ð34Þ

Expression (34) is termed the second-order Shanks

transformation. The process can be continued to

Fig. 2. Sequence of instantaneous temperature profiles Tm at

s ¼ 0:1.

Fig. 3. Sequence of instantaneous temperature profiles Tm at

s ¼ 0:75.
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produce still higher-order Shanks transformation se-

quences. In the present case, the original temperature

sequence Tm is up to m ¼ 4 only; which allows for at

most the employment of the second-order Shanks

transformation. Connections between the original se-

quence Tm and the sequences generated by applying the

first- and second-order Shanks transformations, eð1Þm ðT Þ
and eð2Þm ðT Þ are most instructively represented by the

following triangular arrays:

T0
T1
T2 eð1Þ0 ðT Þ
T3 eð1Þ1 ðT Þ
T4 eð1Þ2 ðT Þ eð2Þ0 ðT Þ:

According to Shanks, the sequence formed by elements

along the diagonal line has a much better convergence

property than the original one. In most cases, we may

even obtain an induced convergent sequence from an

originally divergent one through the Shanks transfor-

mation. Notion of employing the rational fraction (33) to

approximate a geometric series and the convergence

property of the transformed diagonal sequence were

discussed in detail by Shanks [17]. Figure 4 shows at

s ¼ 0:75 the sequence of temperature profiles constructed

from the diagonal elements T0, e
ð1Þ
0 ðT Þ, and eð2Þ0 ðT Þ of the

above triangular arrays. Clearly, the convergence rate is

improved in this new sequence. Figure 5 compares at

s ¼ 0:75 the original sequence of temperature profile Tm
with that obtained from applying the second-order

Shanks transformation, eð2Þ0 ðT Þ. If we consider eð2Þ0 ðT Þ a
more accurate result, apparently, the original solution

(18) ought to be expanded to a much higher order of s.
Instantaneous temperature profiles for different sur-

face tension values r and Stefan numbers D are plotted

in Figs. 6 and 7. All temperature profiles shown in these

plots are that from the second-order Shanks transfor-

mation, eð2Þ0 ðT Þ. In reading these plots, it is reminded

that in the definition of the dimensionless temperature T

(Eq. (6)), T �
s � T �

f is a negative quantity (since it is a

freezing process). Thus the larger the value of the di-

mensionless temperature T is, the lower is the physical

temperature T �. Figure 6 indicates that the physical

temperature profile T � has a larger value everywhere in

the solidified layer for larger surface tension value. This

is not surprising on viewing the interface condition (9),

which states that the action of the surface tension (under

fixed Stefan number) is to increase the equilibrium

temperature at the interface. The same result is found in

Fig. 7 where the surface tension b is held fixed; the di-

mensional temperature profile T � has a higher value for

smaller Stefan number D.

Fig. 4. Sequence of temperature profiles constructed from ap-

plying the first- and second-order Shanks transformations.

Fig. 5. Comparison of the sequence of temperature profiles Tm
with the more accurate result obtained from applying the sec-

ond-order Shanks transformation.

Fig. 6. Instantaneous temperature profiles at s ¼ 0:5 under

different surface tension values.
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4.2. Freezing rate

Another quantity that is of interest is the freezing

rate, i.e., the growth rate of the interface,

dR
dt

¼ D
s

k0 þ sk1 þ s2k2 þ s3k3 þ s4k4 þ � � �
1� s

 

� sr

ð1� sÞ2

!
: ð35Þ

As before, we may define a sequence representing dif-

ferent orders of the freezing rate solutions by succes-

sively adding the next higher order terms into the

expression

R0
m ¼ D

s
S0
m

1� s

 
� sr

ð1� sÞ2

!
; ð36Þ

where S0
m ¼

Pm
n¼0 snkn denotes the first m-term partial

sum of the temperature gradient kn obtained from the

series solution (18). Once again, we may apply the first-

and second-order Shanks transformations to achieve

better-converged results from the above sequence R0
m. In

analogy to Eqs. (33) and (34), we have

eð1Þm ðR0Þ ¼ R0
mþ1 �

R0
mþ2 � R0

mþ1

� �
R0
mþ1 � R0

m

� �
R0
mþ2 � R0

mþ1

� �
� R0

mþ1 � R0
m

� � ;
mP 0; ð37Þ

eð2Þm ðR0Þ ¼ eð1Þmþ1 �
eð1Þmþ2 � eð1Þmþ1

� �
eð1Þmþ1 � eð1Þm

� �
eð1Þmþ2 � eð1Þmþ1

� �
� eð1Þmþ1 � eð1Þm

� � ;
mP 0: ð38Þ

Figure 8 shows the evolution history of the freezing

rate R0
m with parameters values D ¼ 0:1 and r ¼ 0:5,

Ewhile plotted along is the improved result obtained

from the second-order Shanks transformation eð2Þ0 ðR0Þ
for comparison. Convergence of the sequence R0

m is quite

good except at large s. Slow convergence of the original

sequence R0
m at large time is shown in the insert of Fig. 8.

Figure 9 gives the history of the freezing rate (after

Shanks transformation) under various surface tension

values. As indicated by the figure, raising the surface

tension at the interface expedites the freezing rate

jdR=dtj. In all cases demonstrated here, the freezing rate

drops sharply at the early stage of solidification, and

then becomes leveling off progressively. It is found that

at certain critical time the freezing rate reaches a mini-

mum, after that, it rises again. Basically, the freezing

rate in this problem is governed by two mechanisms.

Thickening of the solidified layer reduces the tempera-

ture gradient across the layer and hence reducing the

growth rate of the interface; while the ever rising of the

Fig. 8. Evolution history of the freezing rate solution sequence

R0
m.

Fig. 9. Evolution history of the freezing rate under various

surface tension conditions.

Fig. 7. Instantaneous temperature profiles at s ¼ 0:75 under

different Stefan number values.
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equilibrium temperature at the interface as the freezing

front progresses towards the center of the sphere (as

given by the Gibbs–Thomson condition (9)) causes an

increase in the temperature gradient at the interface and

hence increasing the freezing rate. The latter effect is

more pronounced near the completion of freezing when

the radius of the interface is close to zero. Competition

of these two opposite effects results in the observed

dropping and rising of the freezing rate at the initial and

final phases of solidification, respectively.

4.3. Asymptotic results of freezing rate for D � 1

Figure 8 suggests that the temperature-gradient series

S0
m in (36) can be truncated at OðsoÞ term, the resulting

expression for the freezing rate

dR
dt

� R0
0 ¼

D
s

k0

1� s

"
� sr

ð1� sÞ2

#
ð39Þ

is still a good approximation, at least up to a moderate

value of time s. It is recalled that the k0 in (39) is an

implicit function of D through Eq. (24). In most freezing

and casting problems, the Stefan number D is usually

small (D � Oð10�2Þ), which enables the derivation of the

leading-order expression of k0 for D � 1. After ex-

panding the exponential and error functions at the right-

hand-side of Eq. (24) for small D, we have, correct to

OðDÞ,

k0 ffi �ð1þ rÞ þ D
3
ð1þ rÞ2: ð40Þ

On substituting (40) into Eq. (39), the analytical ap-

proximation of the growth rate is obtained as

dR
dt

ffi D
s

D
3ð1� sÞ ð1

(
þ rÞ2 � 1

ð1� sÞ ð1þ rÞ

� sr

ð1� sÞ2

)
: ð41Þ

Depending on the relative orders of magnitude of the

parameters D and s, we may further distinguish the

following three cases:

(I) s � D � 1 (approximation 1)

In this parameter range, Eq. (41) is dominated by the

leading-order term

dR
dt

ffi �D
s
ð1þ rÞ: ð42Þ

(II) s � D � 1 (approximation 2)

In this parameter range, Eq. (41) is simplified to

(correct to OðDÞ and OðsÞ)
dR
dt

ffi �D
s

ð1
�

þ sÞð1þ rÞ þ sr � D
3
ð1þ rÞ2

�
: ð43Þ

(III) D � 1 � s (approximation 3)

In this parameter range, the leading-order approxi-

mation of (41) is (correct to OðDÞ)

dR
dt

ffi �D
s

1

1� s
ð1

(
þ rÞ þ sr

ð1� sÞ2

)

¼ �D
s

1þ r � s

ð1� sÞ2

( )
: ð44Þ

Eqations (42)–(44) provide in each different range of

time an asymptotic expression of the freezing rate in

terms of relevant physical parameters D, r and s under

the condition of small Stefan number D � 1. For in-

stance, to leading-order approximation, the above as-

ymptotic results predict a linear dependence of the

freezing rate on the surface tension parameter r for all

time ranges. The three expressions are plotted in Fig. 10

for D ¼ 0:01, r ¼ 0:5. In each plot, more accurate result

from the second-order Shanks transformation of the

original sequence R0
m is also provided for comparison.

Clearly, both results are in excellent agreement, indi-

cating that Eqs. (42)–(44) are indeed good approxima-

tions to the freezing rate in the respective parameters

ranges. Particularly we note that in Fig. 10(c), the va-

lidity of the approximation 3 under the designated pa-

rameters values is shown to extend at least up to a time

as large as s ¼ 0:75. In fact this can be easily justified by

glancing at Eq. (31), we immediately come to the con-

clusion k1 � OðDÞ (and so for the subsequent kn, nP 1).

Thus Eq. (44), which is derived from applying the one-

term approximation to the series in (35), is theoretically

the correct leading-order expansion of the freezing rate

for all fixed s ðs < 1Þ under the asymptotic condition

D ! 0.

It has been mentioned previously that the growth

rate of the interface exhibits a local minimum at

certain critical time sc whose value depends on the

surface tension parameter r and the Stefan number

D. Again, such a relationship can be derived from the

approximate form of the freezing rate, Eq. (39). The

condition for a local extreme to occur in the growth

rate is

d

ds
dR
dt

� �
¼ D

s2ð1� sÞ3
�
� k0 1ð � sÞ þ 2k0sð1� sÞ � 2rs2

�
¼ 0:

The above criterion leads to the finding of the roots to

the following quadratic equation:

s2 � 3k0

2ðk0 þ rÞ s þ k0

2ðk0 þ rÞ ¼ 0:

Thus the critical time sc at which the freezing rate is

minimum is given by
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sc ¼
3k0

4ðk0 þ rÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
0 � 8rk0

� �
=ðk0 þ rÞ2

q
4

ð45Þ

in which the solution with ‘+’ sign is to be discarded

because it gives a time sc greater than 1 (i.e. greater than

the total time needed for a complete solidification).

Substituting the asymptotic expression of k0 (Eq. (40))

into Eq. (45) and expanding it for D � 1, we obtain the

approximate expression for the critical time sc (correct

to OðDÞ)

sc ¼
1

4
3ðr
h

þ 1Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr þ 1Þð9r þ 1Þ

p i
þ D

4
rðr þ 1Þ

	 ðr
�

þ 1Þ � ð9r þ 5Þ
3ð9r þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr þ 1Þð9r þ 1Þ

p �
: ð46Þ

Equation (46) is graphed in Fig. 11 for various sur-

face tension parameter values b (b ¼ rD) and Stefan

number D. It is observed that critical freezing rate occurs

at an earlier time for larger surface tension value and

(a) (b)

(c)

Fig. 10. Comparisons between the asymptotic results of the freezing rate and that obtained from the original series solution (with

Shanks transformation) in the parameters ranges (a) s � D � 1, (b) s � D � 1, (c) D � 1 � s.

Fig. 11. Critical time sc for the freezing rate as a function of

surface tension parameter b and Stefan number D.
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smaller Stefan number – a situation corresponding to a

higher equilibrium temperature (dimensional) at the

solid/liquid interface (see the boundary condition (9))

and hence a higher temperature gradient at the freezing

front. In all cases we have considered here, minimal

freezing rate is found to develop in the first half of the

solidification process, i.e., sc 6 0:5. From Fig. 11, it is

also noticed that when b ¼ 0; the minimal freezing rate

always occurs at sc ¼ 0:5, regardless the value of the

Stefan number (as long as D � 1). This is already im-

plied in Eq. (39) as r ¼ 0 is substituted into the equa-

tion; the resulting form of dR=dt has an extreme at

s ¼ 0:5, independent of D.

5. Concluding remarks

A small-time series expansion technique has been

applied in this work to study the thermal effect of the

surface tension on an inward solidification process with

spherical symmetry. A nonlinear Shanks transformation

has been adopted to improve the convergence rate of the

series solution so as to extend its applicability to a larger

time range. In summary, the present result shows that

surface tension increases the equilibrium temperature at

the solid/liquid interface and hence speeds up the growth

rate of the freezing front. The asymptotic expression of

the freezing rate has been obtained for each different

time range under the condition of small Stefan number.

To leading-order approximation, the results predict a

linear increase of the freezing rate with the surface ten-

sion parameter for all time ranges under consideration.

Critical time at which the freezing rate develops a local

minimum has also been determined analytically, which

shows that the freezing rate reaches its minimum value

more quickly for larger surface tension value at the in-

terface.

The form of the Gibbs–Thomson law assumed in the

present analysis is not applicable for solid/liquid inter-

face with extremely small radius of curvature. Thus it is

expected that the validity of the present result cannot be

extended to the time when the freezing front comes very

close to the center of the sphere. In practical applica-

tions, the upper limit of such time depends on the

numerical values of various parameters. A simple esti-

mation of a typical value of this limitation time is given

in the appendix. In practice, the limitation is not that

stringent as it may appear. Aside from this, the present

study does provide critical information regarding to the

variation of the freezing rate with relevant physical

parameters as the thermal effect of the surface tension at

the interface is taken into consideration. It is clear from

the present analysis that surface tension has nonnegli-

gible influence on the freezing rate. This is particularly

true at the initial stage (s � 0) and close to the final

phase (s � 1) of solidification where the freezing rate is

shown to be augmented by a factor r=s and r=ð1� sÞ2,
respectively.

Appendix A

To estimate the typical value of s beyond which the

present analysis is not applicable, we start from the

Gibbs–Thomson law, Eq. (1). Already, it has been stated

in Section 1 that Eq. (1) holds only if e ¼ 2c=LR� � 1.

Rewrite the condition using nondimensional parameters

r and R defined in the text, we obtain

e ¼ rðT �
f � T �

s Þ=ðRT �
f Þ � 1: ðA:1Þ

Let us take r ¼ 0:1, T �
f ¼ 273 K; and assume a small

degree of cooling, ðT �
f � T �

s Þ ¼ 5 K for example. Now, if

we accept that 0.05 is practically a small enough number

for e, condition (A.1) then gives

s ¼ 1� R � 0:96;

which stands for a 96% of solidification of the sphere.

Moreover, the smaller the surface tension parameter r,
the closer this value is to 1. Thus in practice, limitation

on the applicability of the Gibbs–Thomson law in the

form of Eq. (1) is not that restricted as it may appear. In

most cases involving small surface tension, small Stefan

number or small degree of cooling, we can push the limit

of usefulness of the present series solution to a point not

too far from a complete solidification.
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